

- Pletronics LV91/LV97 Series is a quartz crystal controlled precision square wave generator with an LVDS output.
- Solder pad compatible legacy LVDS oscillator solutions.
- FR4 base using the LV93 or LV99 5x7 mm ceramic packaged SMD device.
- Tape and Reel packaging is available.

- 10.9 to 670 MHZ
- 9.7 mm x 14.0 mm 'B' package
- Enable/Disable Function: LV91 on pad 2 LV97 on pad 1
- Low Jitter

This series, LV91 and LV97, is not recommended for new designs. * For new designs, pin-out on pad 1 is the only available option for LV99 series part.

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's Weight of the Device: 0.66 grams Moisture Sensitivity Level: 1 As defined in J-STD-020C Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit
V _{cc} Supply Voltage	-0.5V to +6.5V
Vi Input Voltage	-0.5V to V_{cc} + 0.5V
Vo Output Voltage	-0.5V to V_{cc} + 0.5V

Thermal Characteristics

The maximum die or junction temperature is 155°C The thermal resistance junction to board is 40 to 80°C/Watt depending on the solder pads, ground plane and construction of the PCB.

July 2012

Part Number:

LV9x	45	D	Е	v	-125.0M	-xx	
							Packaging code or blank T250 = 250 per Tape and Reel T500 = 500 per Tape and Reel T1K = 1000 per Tape and Reel
							Frequency in MHZ
							Supply Voltage V _{cc} V = $3.3V \pm 10\%$
							Temperature Range blank = -10 to +70°C C = -20 to +70°C E = -40 to +85°C
							Series Model
							Frequency Stability 45 = ± 50 ppm 44 = ± 25 ppm 20 = ± 20 ppm
							Series Model (x is 1 or 7)

Part Marking:

PLE LV9x FF.FFF M • YMDXX

Marking Legend:

 $\begin{array}{ll} \mathsf{PLE} = \mathsf{Pletronics} & X = 1 \text{ or } 7 \\ \textit{FF.FFF} \ \mathsf{M} & = \mathsf{Frequency} \text{ in } \mathsf{MHZ} \\ \textit{YMD} = \mathsf{Date} \text{ of } \mathsf{Manufacture} \ (\mathsf{year}\mathsf{-month}\mathsf{-day}) \\ \mathsf{All other } \mathsf{marking} \ \mathsf{is internal factory \ codes} \end{array}$

Codes for Date Code YMD

Code	0	1	2	3	4	Code	Α	В	С	D	E	F	G	Н	J	К	L	М
Year	2010	2011	2012	2013	2014	Month	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

Code	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	G
Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Code	Н	J	К	L	М	Ν	Ρ	R	Т	U	V	W	X	Y	Z	
Day	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

July 2012

Electrical Specification for 3.30V \pm 10% over the specified temperature range and the frequency range of 10.9 MHz to 670 MHz

Item	Min	Мах	Unit	Condition
Frequency Accuracy "45"	-50	+50	ppm	For all supply voltages, load changes, aging for 1
"44"	-25	+25	1	year, shock, vibration and temperatures
"20"	-20	+20		
Output Waveform		LVDS		
Output High Level		1.60	Volts	
Output Low Level	0.90		Volts	See load circuit
Differential Output (V _{OD})	250	450	mVolts	
Output Offset Voltage (V _{OS})	1.125	1.375	Volts	RT = 50 onms
Differential Output Error (dV _{os})		50	mVolts	
Output Symmetry	47	53	%	Referenced to 50% of amplitude or crossing point
Output T_{RISE} and T_{FALL}	150	230	pS	Vth is 20% and 80% of waveform
Jitter	-	0.6	pS RMS	Measured from 12KHz to 20MHz from Fnominal
	-	2.8	1	Measured from 10Hz to 20MHz from Fnominal
Output Short Circuit Current	-	-20	mA	Vout = 0.0V
Vcc Supply Current	-	80	mA	
Enable/Disable Internal Pull-up	50	-	Kohm	To Vcc (equivalent resistance)
V disable	-	0.8	Volts	Referenced to Ground
V enable	2.0	-	Volts	Referenced to Ground
Output leakage V _{OUT} = V _{CC}	-20	+20	uA	Pad 1 low, device disabled
$V_{OUT} = 0V$	-20	+20	uA	
Enable	-	10	nS	Time for output to reach a logic state
Disable time	-	10	nS	Time for output to reach a high Z state
Start up time	-	5	mS	Measured from the time Vcc = 3.0V
Operating Temperature Range	-10	+70	°C	Standard Temperature Range
	-20	+70	°C	Extended Temperature Range "C" Option
	-40	+85	°C	Extended Temperature Range "E" Option
Storage Temperature Range	-55	+125	°C	

Specifications with E/D open circuit or connected to $V_{\mbox{\tiny CC}}$

July 2012

Typical Phase-Noise Response

Load Circuit

Test Waveform

July 2012

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

ESD Rating

Model	Minimum Voltage	Conditions
Human Body Model	1500	MIL-STD-883 Method 3115
Charged Device Model	1000	JESD 22-C101

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Courier New Bar code is 39-Full ASCII (The part number will show as LV91xx or LV97xx)

P/N:	LV9920DV-3	12.50M	PIE							
Custo	Customer P/N:									
	1234	5678								
Qty:	1000	D/C	A-BT							

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

RoHS Compliant

2nd LvL Interconnect Category=e4 Max Safe Temp=245C for 10s 2X Max

Layout and application information

For Optimum Jitter Performance, Pletronics recommends:

- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.

As much ground plane and thermal paths that can be realized under and to the side of the part is desired.

July 2012

Mechanical:

FR4 PCB Base:

Label:

FR4 base

Solder masked

All via holes tented on bottom Copper Clad $\frac{1}{2}$ oz. Typical Gold plated 0.02 µinch (0.5 µm)

Laser engraved on the 5x7 mm oscillator that is mounted on the

Pin 3 Ground plane is typical

Not to scale

	Inches	mm
А	0.380 <u>+</u> 0.010	9.65 <u>+</u> 0.25
В	0.550 <u>+</u> 0.010	13.97 <u>+</u> 0.25
С	0.098 <u>+</u> 0.010	2.49 <u>+</u> 0.25
D ¹	0.026 typ.	0.66
E1	0.050	1.27
F ¹	0.028 R	0.72 R
G¹	0.180	4.57
H ¹	0.100	2.54
I1	0.050	1.27
J ¹	0.015	0.38

¹ Typical Dimensions

LV91 Pad	LV97 Pad	Function	Note						
2	2 1 Output Enable/Disable		When this pad is not connected the oscillator shall operate. This is not a recommended condition!!!!!! When this pad is <0.80 volts, the output will be inhibited (High impedance state) Recommend connecting this pad to $V_{\rm CC}$ if the oscillator is to be always on.						
1	2	No function	Recommend connecting this pad to ground. The is internal connection.						
3	3	Ground (GND)							
4	1	Output	The outputs must be terminated, 100 ohms between the outputs is the ideal						
Ę	5	Output*	Capacitor coupled terminations can be used.						
6	6	Supply Voltage (V_{cc})	Recommend connecting appropriate power supply bypass capacitors as close a possible.						

July 2012

Reflow Cycle (typical for lead free processing)

The part may be reflowed 3 times without degradation.

Tape and Reel: available for quantities of 250 to 1000 per reel

	Constant Dimensions Table 1											
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max				
8mm		1.0			2.0							
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05							
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1				
24mm		1.5			<u>+</u> 0.1							

	Variable Dimensions Table 2											
Tape Size	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao, Bo & Ko					
24 mm	12.1	14.25	7.5 <u>+</u> 0.1	16.0 <u>+</u> 0.1	8.0	16.3	Note 1					

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm Not to scale

		REEL DIMENSIONS			
Α	inches	7.0	10.0	13.0	
	mm	177.8	254.0	330.2	
в	inches	2.50	4.00	3.75	
	mm	63.5	101.6	95.3	Tape
С	mm	13.0 +0.5 / -0.2			wiatri
D	mm			24.4 +2.0 -0.0	24.0

Reel dimensions may vary from the above